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PROJECT NO, 588-1. SURFACE RECOMBINATION VELOCITY INVESTIGATIONS 

STAFF: M e  A. LITTLEJOHN AND R e  W. LADE 

The object  of t h i s  research is t o  study t h e  e f fec ts  of Co 60 

gamma i r r a d i a t i o n  (approximately 1.3 M e V )  on both t h e  bulk and 

surface proper t ies  of s i l i con .  Transient methods are used t o  

study bulk and surface recornbination rates by first assuming 

t h a t  recombination takes  place through a s ing le  energy l e v e l  

(recombination cen te r )  i n  t h e  forbidden energy region. This 

implies t h a t  t h e  Shockley-Read-Hall recombination theory appl ies ,  

and using computer techniques, parameters which descr ibe t h i s  

recombination center  are obtained. 

t a t i o n  of experimental da ta  can be made. 

Thus, a meaningful enterpre- 

During t h e  past six months, work has been completed OB 

surface recombination veloci ty  measurements i n  s i l i con .  One 

paper e n t i t l e d  "Silicon Surface Damage Due t o  Gamma Radiation" 

h a s  been published i n  volume XXI of t h e  Proceedings of t h e  

National Elec t ronics  Conference and t h i s  paper was a l s o  o r a l l y  

presented a t  t h e  National Electronics  Conference a t  Chicago 

i n  October, 1965. 

Several  100 ohm-cm n-type samples were sen t  t o  RCA Labora- 

t o r i e s  a t  Princeton, N. J. f o r  a low temperature ( 7 0 O O C )  

oxidation. 

by photoconductive decay (PCD) was f r u i t l e s s ,  

exac t ly  as described i n  SDL repor t  NO. 3-588 when s imi l a r  

oxidations were car r ied  out a t  1000°C. The heat treatment 

durfng oxidation reduced the l ifetime by more than two orders 

An attempt t o  measure the  l ifetimes of these  samples 

The problems were 
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of magnitude and thus  it becomes almost impossible t o  measure 

lifetime by PCD. 

f o r  lifetime measurements using X-ray techniques capable of 

measuring much smaller lifetimes, 

yielded no f u r t h e r  information. 

The samples were then sen t  t o  NASA I R D  Langley 

However, t h i s  technique 

A l l  a t tempts  a t  measuring 

sur face  v e l o c i t i e s  on Si02 passivated 

unsuccessful i n  t h i s  laboratory.  

Work has begun on t h e  use of t h e  

sur faces  by PCD have been 

temperature dependence of 

bulk and sur face  l i f e t i m e  as a technique for i nves t iga t ing  

r a d i a t i o n  damage. 

of bulk damage, but no evidence has been found of its use as  a 

t o o l  i n  t h e  study of t he  surface.  

is made, t h i s  should be a very use fu l  technique. 

This technique is  q u i t e  common i n  t h e  study 

If a proper i n t e r p r e t a t i o n  

The instrumentation used i s  e s s e n t i a l l y  t h e  same as t h a t  

described i n  SDL repor t  No. 1-5880 

ture  chamber is used t o  cont ro l  t h e  temperature of the sample. 

The temperature is measured using a chromel-alumel thermocouple 

and a Leeds and Northrup m i l l i v o l t  potentiometer. 

is used as a r e f r i g e r a n t  and t h e  lifetime can thus  be e a s i l y  

measured over a temperature range of 200-400 degrees Kelvin. 

D u r i n g  t h e  i n i t i a l  measurements t h e  temperature range was 

300-400 degrees Kelvin, 

prepared f o r  measurements (Samples lNA58-6 and 1NAh5-10) . One 

is a bulk sample and the  other a t h i n  f i lament  (.Os cm x 0.5 cm 

x 1.5 cm) f o r  surface measurements. 

consis ted of mechanically lapping the  sample w i t h  800 and 1 O / y  

lapping compound and then chemically polishing with a so lu t ion  

A Hafstrom-Thompson tempera- 

Liquid C02 

Two n-type 100 ohm cm samples were 

The surface preparation 



3 I 

of 90$ HN03 and 10% HF (reagent grade a c i d s )  . 
was lapped with 120 g r i t  t o  provide an i n f i n i t e  surface 

recombination ve loc i ty  (>  l o 4  cm/sec) . 
The bulk sample 

Figs. 1 and 2 show t h e  temperature dependence of t h e  bulk 

and surface lifetimes of the two n-type samples. 

is a p l o t  of t h e  t h e o r e t i c a l  Shockley-Read-Hall model which 

g ives  a bes t  f i t  t o  t h e  data  over t h e  temperature range 300-400 

degrees Kelvin. 

curves exhib i t  a maximum value f o r  temperatures near 430-440% 

while t h e  t h e o r e t i c a l  curves do not. 

by t h e  Shockley-Read-Hall model Ll] while t he  t h e o r e t i c a l  

equation is inva l id  f o r  temperatures greater than approximately 

4OU% . 

Also shown 

It should be noted t h a t  both experimental 

This maximum is predicted 

Before any i r r a d i a t i o n s  could be car r ied  out,  t h e  effects 

of annealing had t o  be invest igated so t h a t  when examining t h e  

temperature dependence of lifetime any annealing of damage could 

be avoided. Five previously i r r a d i a t e d  bulk samples ( t o t a l  

dosage 1.0 x 10 roentgens) were annealed a t  various temper- 

atures f o r  approximately 15  min. and then slowly cooled back t o  

room temperature. The l i f e t imes  were measured as  an ind ica t ion  

of annealing. Fig. 3 shows t h e  results of these  experiments 

and from these  r e s u l t s  it i s  deduced t h a t  annealing occurs a t  

a threshold temperature f o r  t h i s  gamma dosage of near 410.0%. 

The samples were i r r ad ia t ed  i n  an argon atmosphere, and 

t h e  resul ts  of t hese  i r r a d i a t i o n s  are indicated i n  Figs. 4 - 11 
Before discussing these experimental resul ts ,  t h e  theoret-  

6 

i c a l  implications of t h e  well-known Shockley-Read-Hall model 

I 
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w i l l  be discussed. The l i f e t ime  of free c a r r i e r s  i n  a semi- 

conductor w i t h  a s ing le  energy l e v e l  i n  the  forbidden gap (for 

<<no o r  :<< p is given by [2] 
0 

where n 

conduction and valence bands when t h e  Fermi energy corresponds 

t o  t h e  energy of the  recombiqation center  i n  the forbidden 

region. Also, '& and rho are t h e  lifetimes i n  e x t r i n s i c  n 

and p type material, respect ively.  

dependence of 7 is complex. 

and p are t h e  d e n s i t i e s  of e l ec t rons  and holes  i n  t h e  
1 1 

I n  general ,  t he  temperature 

However, i n  t h e  temperature range 
1 

200-400°K one can assume for n-type mater ia l  t h a t  no - Nd, t he  

n e t  donor densi ty ,  and that no>> p . 
be reduced t o  the form 

The lifetime can then 
0 

Where A, B, C ,  and D are constant with respec t  

and d. = kE Here k is Boltzmann*s constant 

width of the energy gap a t  T = 0 K. Thus, t he  0 
go* 

to temperature 

and E is the 
go 

problem is t o  

best-fit t he  experimental data t o  a curve of t h i s  type,  t hus  

determining the value of the  constants.  



The problem can be f u r t h e r  s implif ied if other  assumptions 

are made. 

i n  the  upper half of t he  gap, no>>po, pl. 

Thus, f o r  n-type material w i t h  a recombination center  

Then 

which has a temperature dependence of t h e  form 

Similarly,  for n-type material with t he  recombination center  i n  

the lower half of the  gap n p p  and p p n l  ’ Then 0 

Which again has a temperature dependence of the form 

Thus, if A, B, and C can be determined from a best f i t  of the 

data t o  a curve of the form of either ( 5 )  o r  (31,  then the 

magnitudes of A, B, and C determine t h e  loca t ion  of t h e  recombi- 

na t ion  center .  

has been used w i t h  a least-squares  e r r o r  curve f i t t i n g  method as 

described by Matthews and Wartera 

was programed on the  IBM 1620 d i g i t a l  computer, and the r e s u l t s  

of the experiments are shown i n  Table I. 

I n  our i n i t i a l  experiments, t h i s  l a t te r  method 

This curve f i t t i n g  technique 
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Sample 

1NA58-6 
W 

W 

l? 

W 

1NA35-10 
W 

W 

n 

n 

TAB= I 

Tota l8  Dose(roentnens1 AE ( ev )  

Pre  I r r a d i a t i o n  Ev+.256 

5.10 104 Ec- e475 

1.02 105 Ec-.491 

2.03 105 Ec- . 5 16 

3.06 105 EcO.499 

5.10 104 Ec'.779 

Pre I r r a d i a t i o n  Ev+.2&9 

1.02 105 Ev+ . 200 

2.03 105 Ev+ . 027 

3.066 x lo5 Ev+.02 

It appears t h a t  t h e  energy l e v e l  a f t e r  

u 
231 

54.3 

w.1 
37.7 

26.9 

14.6 

20.5 

15.5 
8.65 

8.65 

f%O 

4.86 

- 
,012 

-122 naec 

.122 niec 

i r r a d i a t i o n  is near 

the  center  of t h e  gap and stays i n  t h i s  posi t ion (within 

experimental e r r o r )  w i t h  increasing gamma dosage. 

the  surface the  defect  l eve l  seems t o  change positicm as t h e  gama 

dosage increases ,  w i th  the  energy l e v e l  approaching the  valence 

band edge. 

r a t i o  of e lec t ron  t o  hole capture cross sect ion f o r  t h i s  l e v e l  

i n  n-type material. 

r a t i o  of t he  7 p o  t o  %IO i n  Table I. 

explanat ions for these phenomena. 

a t  t h e  surface stays i n  the  same posi t ion wi th  respect  t o  t h e  

l e v e l  i n  t h e  bulk, with t h e  increasing gamma i r r a d i a t i o n  causing 

a decrease i n  surface poten t ia l  ( t h e  bands must bend upward 

However, near 

For t h i s  t o  occur, t he re  must e x i s t  an increasing 

This  i s  t r u e  as can be seen by t h e  large 

There a r e  two possible  

One is that the energy l e v e l  
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near t h e  sur face) .  If so, t h i s  would explain why t h e r e  exists 

a minimum i n  t h e  surface recombination ve loc i ty  as t h e  samples 

a r e  i r r ad ia t ed .  (see SDL repor t  No. 2-588) . 
The other  is that t h e  gamma i r r a d i a t i o n  does change t h e  

pos i t ion  of t h e  predominant energy l e v e l  while t h e  bands remain 

unchanged . 
It is f e l t  t h a t  once p-type samples are i r r a d i a t e d  and t h e  

temperature dependence of the  bulk and surface lifetimes 

obtained, more l i g h t  w i l l  be shed on t h e  possible  explanation 

f o r  t h e  r e s u l t s  presented here. 

curve f i t  t o  t h e  da ta  ind ica te  t h a t  an increased temperature 

range should be examined t o  inves t iga t e  t h e  p o s s i b i l i t y  of 

mul t ip le  recombination centers,  with f u r t h e r  complexity of the 

mathematical models. 

Also, t h e  da ta  and t h e  computer 

Thus, f u t u r e  work w i l l  include extended temperature ranges, 

wi th  da ta  taken on both n-and p-type samples. Inves t iga t ions  

on surfaces prepared i n  d i f f e r e n t  manners w i l l  be car r ied  out 

during t h e  next repor t  period t o  examine t h e  surface de fec t s  

caused by gamma i r r a d i a t i o n  with respec t  t o  those present before 

exposure. 

REFERENCES 
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3. N. Matthews and P o  Warter, Princeton University, Dept. of 

Elec t r ica l  Engineering Technical Report 7, Apri l ,  1964. 
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PROJECT NO, 588-2. SURFACE STUDIES ON M e  0 ,  S o  CAPACITORS 

STAFF: R. J. MATTAUCH AND R. W, LADE 

Semi-annual progress report  #3 from t h e  Semiconductor Device 

Laboratory a t  North Carolina S t a t e  University a t  Raleigh contains  

a r epor t  on s i l i c o n  surface state dens i ty  changes induced by 

gamma r a d i a t i o n  (pp. 16-30). 

devoted t o  t h e  explanation of information gained on the  above 

mentioned top ic  from August, 1965 through March, 1966. 

This s ec t ion  of r e p o r t  #4 is  

A s  one w i l l  r e c a l l ,  t he  method of Zaininger’ is used to 

determine surface s t a t e  densi ty  as a funct ion of surface p o t e n t i a l  

f o r  t h e  s i l i con .  

f ab r i ca t ed  (see Figure 1). 

50 p-type and 50 n-type devices  have been 

Point by point capacitance versus 

b i a s  voltage curves have been taken f o r  one n-type (#14-45) 

and one p-type (#36-44) device as a funct ion of galama rad ia t ion .  

Table I gives  i r r a d i a t i o n  data f o r  these  two devices. Figures 

2 and 3 give curve families f o r  these  devices as a funct ion of 

gamma rad ia t ion .  Figures 4 and 5 are p l o t s  of e f f e c t i v e  surface 

state dens i ty  versus  surface p o t e n t i a l  f o r  t h e  above devices. 

I n  order t o  t a k e  CV data on many devices i n  a shor t  period 

of time, we found it necessary t o  construct  an automatic CV 

p l o t t e r  (see Figure 6). 

capacitance-voltage p lo t  i n  20 seconds. 

and 3 n-type, were i r r ad ia t ed  and subsequent CV curves were 

taken. 

p-type devices. The i r r a d i a t i o n  data f o r  these  two devices a r e  

given i n  Table I. 

This p l o t t e r  enables one to obtain a 

Six devices, 3 p-type 

Figures 7 and 8 show CV curves f o r  t y p i c a l  n-type and 

One w i l l  conclude on t h e  b a s i s  of a cursory 
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examination of these  curves and a comparison thereof with those 

of Figures 2 and 3 that  t h e  t rends  i n  hor izonta l  displacement 

of t h e  curves are t h e  samee This was found t o  be t r u e  f o r  a l l  

six devices used i n  the  confirmation experiments. 

The introduct ion of a pos i t ive  charge dens i ty  i n  t h e  S i0  
2 

The apparent ly  causes t h e  s h i f t  t o  t h e  l e f t  i n  t h e  CV curves. 

quest ions which must now be asked are: 

1. Are these  charges d i s t r ibu ted  throughout t h e  oxide 

and i f  so what is t h e i r  d i s t r i b u t i o n ?  

Are these charges mobile a t  room temperature and/or a t  

elevated temperatures? 

Can these  charges be moved i n  t h e  oxide by means of an 

appl ied bias a t  elevated temperatures and then be made 

immobile by room temperature quenching? 

Are these  charges perhaps due t o  alkali ions present i n  

t h e  oxide? 

2. 

3.  

4. 

I n  order t o  f i n d  answers t o  these and other  questions,  one 

must devise  a series of diagnost ic  experiments, These cons i s t  

of subject ing devices t o  a va r i e ty  of temperature and bias 

condi t ions f o r  given periods of time and then using t h e  automatic 

CV p l o t t e r  t o  observe t rends  i n  curve movement, 

Several  p-type devices were subjected t o  the  following 

experiments: 

a. 

be 

C. 

Heat t o  75% wi th  -5 v o l t  b i a s  applied t o  t he  gate. 

Heat t o  7 5 O C  with +5 v o l t  bias applied t o  t h e  gate. 

Heat t o  7 5 O C  with no b i a s  appl ied,  
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These annealing experiments were ca r r i ed  out i n  an  argon atmosphere. 

Table 2 e x h i b i t s  var ious sequent ia l  bias and annealing s t e p s  

taken with seve ra l  devices. 

with probable chqe diagrams are  a l s o  shown i n  t h i s  t ab le .  

C ~ V  diagrams are constructed on the  hypothesis that mobile 

Capacitance versus  bias p l o t s  a long 

The 

a l k a l i  ions are present i n  t h e  oxide. A possible  explanation 

f o r  each of these  s i t u a t i o n s  follows. 

Case 1. Pos i t i ve  ions a r e  supposed present in a l aye r  of t h e  

oxide near t h e  oxide-semiconductor in te r face .  This 

causes the surface t o  be n-type with zero bias applied.  

Case 2. Here it is  supposed t h a t  t h e  elevated temperature g r e a t l y  

increases  the  pos i t ive  ion mobility. 

causes a d r i f t  of pos i t ive  ions toward t h e  gate. 

e t  a l O 2  show that t h i s  does tend t o  increase t h e  

capacitance seen f o r  a given b i a s  (i.e.$ s h i f t s  t h e  CV 

curve toward zero b i a s ) .  

The appl ied b i a s  

Snow, 

Case 3. Once again t h e  temperature increases  t h e  mobili ty of t h e  

pos i t i ve  ions and t h e  bias causes them t o  d r i f t  toward 

t h e  in te r face .  I n  t h i s  case, some of t h e  pos i t i ve  ions 

are able t o  g e t  c lose enough t o  the  s i l i c o n  o r  j u s t  

inside and cause the  surface t o  be n-type and exh ib i t  

p roper t ies  of an n-type subs t ra te .  Note t h a t  t h e  l e f t  

port ion of t h e  CV curve bends back up s igni fy ing  t h a t  a 

copious supply of minority c a r r i e r s  (ho le s )  are present 

near t h e  n-type surface and thus are ab le  t o  fol low the 

appl ied s igna l .  
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Case 4. Same as Case 3. 

Case 5. Assuming mobile ions  due t o  t h e  elevated temperature we 

see that t h e  negative b i a s  causes t h e  ions t o  move 

toward t h e  metal and remain t h e r e  i n  a t h i n  sheath,  

This causes less of an inversion l aye r  a t  t h e  surface, 

Case 6. Same as Case 5. 
Case 7. With no b i a s  and a gradient  of pos i t i ve  ions  we see a 

diffusion of ions away from t h e  ga t e  thus  inver t ing  

t h e  surface even more. 

Case 8. With a negative ga t e  and mobile ions we are a b l e  t o  b r ing  

t h e  e l ec t rons  back i n t o  a t h i n  sheath a t  t h e  gate, 

Experiments attempting t o  explain pre- and post-radiat ion charge 

d e n s i t i e s  i n  t h e  Si02 w i l l  continue through the  next r e p o r t  

period. 
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PROJECT NO. 588-3. MEASUREMENT OF SURFACE RECOMBINATION VELOCITY 
AS A FUNCTION OF SURFACE POTENTIAL 

STAFF: F. J. MORRIS AND R. W. LADE 

The object ive of t h i s  project  is t o  determine experimentally 

the e f f e c t s  of sur face  po ten t i a l  on the sur face  recombination 

v e l o c i t y  of an  oxide-sil icon surface and its va r i a t ion  wi th  

gamma rad ia t ion .  

The device t o  be used is  shown i n  Figure 1. 

High Resistivity 

Aluminum Gate 
Low Resistivity I QDrni -1 7, Substrate 

I ohmic Contacts .I 
Figure 1. Proposed device for measuring surface recombination 

veloaity. 

The base region is a high r e s i s t i v i t y  region i n  order that 

t h e  sil icon-oxide in t e r f ace  w i l l  determine t h e  v-i  character-  

i s t i c s  of t h e  device. 

a high r e s i s t i v i t y  region i n t o  a low r e s i s t i v i t y  substrate .  

first at tempts  were made by chemically pol ishing 70 ohm CE 

Several  a t tempts  have been made t o  d i f f u s e  

The 



32 

N-type Merck s i l i c o n  and evaporating a t h i n  coat of aluminum 

onto t h e  s i l i con .  The samples were placed i n  a d i f f u s i o n  furnace 

f o r  2.5 hours a t  125OoC. 

0.7 m i l s  deep. 

by s t a i n i n g  t h e  junction. 

poor. The devices exhibited no s a t u r a t i o n  cur ren t  i n  t h e  reverse  

d i r e c t i o n  and had a nominal reverse  breakdown vol tage of 2 vo l t s .  

The d i f fused  region was approximately 

The d i f fused  f r o n t  was very irregular as determined 

The v- i  c h a r a c t e r i s t i c s  were very 

Samples of 2 ohm cm N-type Monsanto s i l i c o n  were chemically 

polished and taken t o  the  Research Triangle I n s t i t u t e  where they 

were d i f fused  a t  12OO0C f o r  15  minutes using diborane gas as 

t h e  dopant. The oxide was then removed from t h e  samples and 

the samples were d i f fused  a t  13OO0C f o r  six hours. Oxygen 

bubbled through water a t  25% flawed through furnace tube a t  

2 l i t e r s  per minute with no dopant present. 

then  s l i c e d  and s ta ined and no improvement was found. Some 

reg ions  on t h e  surface were P-type while o thers  were N-type as 

ind ica ted  i n  t h e  photographs and borne out by thermal probe 

measurements. This apparent masking of part of t h e  s i l i c o n  was 

The samples were 

probably due t o  an oxide formed during the  first step of t h e  

two s t e p  diffusion.  

apparent ly  the  oxide d id  not graw evenly across  t h e  surface.  

Due t o  t h e  low concentration of t h e  dopant gas ( i n  order t o  obtain 

a high r e s i s t i v i t y  region)  t h e  oxide d id  not a c t  as a source of 

t h e  dopant. 

Oxygen was present  i n  the  carrier gas  and 

Other samples have been ca r r i ed  through t h i s  two-step 

d i f fus ion  process wi th  the  only difference being i n  t h e  first 
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s t ep ,  

time increased. 

obtained yet  , 

Oxygen was removed from t h e  c a r r i e r  gas and the deposi t ion 

The f i n a l  r e s u l t s  on these  samples have not been 

Some e p i t a x i a l  P-N junct ions and N-P junct ions have been 

purchased w i t h  the  des i red  cha rac t e r i s t i c s .  

r e s i s t i v i t y  is  nominally 10 ohm ern and the s u b s t a t e - i s  .02 ohm cm. 

The e p i t a x i a l  l a y e r  

Work w i l l  

Some 

\ 

be ca r r i ed  out on both  d i f fused  and e p i t a x i a l  junct ions,  

work has been car r ied  out t o  determine the  r e l a t i o n s h i p  

between t h e  amount of aluminum evaporated on a g l a s s  sl ide and 

its e l e c t r i c a l  conductance and l i g h t  t ransmissivi ty .  

information w i l l  be used i n  the gate design, 

This 

A technique was developed t o  s t a i n  p-n junct ions very similar 

t o  that  i n  the l i t e r a t u r e ,  

Work is present ly  being ca r r i ed  out t o  develop the  technique 

f o r  photoetching. 



34 

PROJECT NO, 588-4, DEEP LYING CENTERS I N  GERMANIUM 

STAFF: W, B, FRENCH AND R, W. LADE 

V, I, Stafeev i n  a series of papers (Soviet  Phys, Tech, 

Phys,, 2, p. 1502, 1958, Soviet Phys,-Solid S ta t e ,  A, p. 763, 
1959) has proposed t h a t  t h e  va r i a t ion  of t h e  d i f fus ion  length,  

and therefore ,  l i f e t i m e ,  i n  a semiconductor, could provide t h e  

b a s i s  for new semiconductor devices and t h e  explanation of 

phenomena noted by Tyler (Phy. Rev,, 96, p. 226, 1954) and Lebedev, 

Stafeev, Luchkevich (Sov. Phy. - Tech, Phy., 1, p, 2071, 1956) i n  

i ron-  and gold-dopedgerraanium. I n  p a r t i c u l a r  i f  t h e  lifetime of 

t h e  excess carriers should increase with increased c a r r i e r  

i n j ec t ion ,  then a negative r e s i s t ance  region should be exhibi ted 

i n  t h e  forward V I  c h a r a c t e r i s t i c  of a long base (base much greater 

than  d i f fus ion  length)  diode. 

It was decided t o  look f u r t h e r  i n t o  t h i s  l i f e t i m e  v a r i a t i o n  

effect  on diodes, both from t h e  t h e o r e t i c a l  and experimental 

po in t  of view, 

charge t ranspor t  was approximate, 

of a first order nature  t o  gain a look i n t o  a new pr inc ip le ,  

Thus, much work is l e f t  i n  t h e  a n a l y t i c  domain f o r  long base 

diodes operating under conditions s u f f i c i e n t  t o  cause the  lifetime 

t o  vary. 

1962) lends i tself  wel l  t o  t h i s  problem and el iminates  the  need 

of S tafeevts  u n i t y  in j ec t ion  e f f i c i ency  assumption. 

has been solved f o r  a constant l i f e t i m e  with fewer assumptions 

f o r  heavy in j ec t ions ,  

A s  Stafeev himself noted, h i s  ana lys i s  of t h e  

Some of h i s  assumptions are 

The technique of Lade (Ph.D. t h e s i s ,  Carnegie Tech, 

The problem 

The case f o r  va r i ab le  l i f e t i m e  and 
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4 

mobil i ty  lead t o  a nonlinear d i f f e r e n t i a l  equation which w i l l  be 

solved completely and wi th  a minimal number of assumptions by 

numerical techniques. 

If d i f f e r e n t  dopants can be found t o  produce the  necessary 

lifetime va r i a t ions ,  then the obvious problem is posed - what 

parameters ( t r a p  l e v e l ,  capture c ros s  sec t ion ,  temperature, 

doping l e v e l )  w i l l  y i e l d  the greatest negative r e s i s t ance?  

lifetime under i n j e c t i o n  was analyzed by the  model proposed by 

Schockly, Read, Hall (Phy. Rev., a, p. 835, 19521, henceforth 

ca l l ed  t h e  S-R-H m o d e l .  

partial de r iva t ives  wi th  respec t  t o  t he  va r i ab le s  and obtaining 

t h e  extrernum was not used f o r  two reasons. 

are t ranscendental  and there is no guarantee that  the values of 

the parameters would be physical ly  r e a l i z i b l e .  Two, not a very 

complete p i c tu re  would be gained from knowledge only of t h e  

extrema, Thus, a parameter v a r i a t i o n  study was run on the IBM 

1620 t o  discover t he  best lifetime var ia t ions .  This study has 

been completed. 

paths are multivalent.  

model was inappl icable .  Whereas, for a narrow range of 

condi t ions,  i f  a l l  t h e  conditions are being varied then a s i n g l e  

model does not give  the t rue  s tory.  

The 

The obvious technique of taking the  

One, the equations 

The dopants which provide t h e  recombination 

This means that the  S-R-H s ing le  t r a p  

A t  t h i s  s t age  the theory of multivalent recombination and 

t rapping  is being s tudied i n  order t o  determine how they can be 

used t o  shape the  l i f e t i m e  var ia t ion .  
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Another aspect  of Stafeev's work t h a t  needs some a t t e n t i o n  

is t o  experimentally confirm t h e  f a c t  t h a t  lifetime increase 

under increased i n j e c t i o n  w i l l  r e s u l t  i n  a negative res i s tance .  

I n  none of h i s  work is any mention made of an  experimental 

determination of l i f e t i m e  as  a func t ion  of excess c a r r i e r  dens i ty  

and using t h i s  t o  p red ic t  t h e  V-I curves. 

Work is j u s t  g e t t i n g  underway t o  s ta r t  t h e  experimental 

procedure and prepare samples f o r  measurement 

e 

c 


